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This paper presents a parametric study of the electric motor based on model order reduction (MOR). To include the effect of the 
parameter into the reduced model, multipolar moment matching method is used. Firstly, the high dimensional model is parameterized 
using the multipolar moment matching method based on Taylor series expansion and then proper orthogonal decomposition (POD) 
based MOR is applied to the parameterized model. The reduced model is compared with the high dimension finite element method 
(FEM) model of a surface mounted permanent magnet motor (SPMSM). Results prove the ability of the reduced model to provide a 
good approximation of the high dimensional model under the parameter variation with reduced computational cost.  
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I. INTRODUCTION 
N THE design of electric motors, numerical methods such as 
the finite element method (FEM) is widely used. Whereas 

for a high dimensional system, FEM based analysis is time-
consuming. To obtain an accurate and fast computational 
analysis for high dimensional systems, the proper orthogonal 
decomposition (POD) based model order reduction (MOR) is 
proposed [1]. POD based MOR uses the method of snapshots 
to generate the optimal basis for the reduced model. Although 
POD based MOR is considered as the computationally 
inexpensive method to analyze the electric motors, with the 
consideration of the parameter variations, the construction of 
the MORs can, however, be computationally expensive and 
meaningless. Because with the change of the parameters, the 
whole system changes and consequently previously modeled 
MOR is no longer valid. Thus the modeling, reduction, and 
analysis should be repeated every time when there is a 
parameter variation. To overcome this problem, parametric 
model order reduction (PMOR) is studied. Various PMOR 
techniques are documented in the literature. But these methods 
fail to give good approximations during multiparameter 
variation and effect of nonlinearities in parameters. A PMOR 
based on multiparameter moment matching method to analyze 
the coupling capacitances is presented in [2]. In this present 
work, POD is coupled with multiparameter moment matching 
method to generate a PMOR for a parametrically varying 
motor model. The mathematical derivation and the application 
on a surface mounted permanent magnet motor (SPMSM) is 
presented in section II. The results obtained from the reduced 
model are compared with the FEM analysis to validate the 
proposed method. The result shows the effectiveness of the 
proposed method in approximation the full model under 
parameter variation with reduced computational cost. 

II. NUMERICAL METHOD AND APPLICATION 
The behavior of the electric motors is studied using the 

magnetic vector potential formulation in FEM. The potential is 

approximated by the nodal basis function. Using the Galerkin 
method, the expression for potential can be written as 

                                         =FMU                                        (1) 
where, M mxm is the stiffness matrix, Umx1 is the vector of the 
nodal potentials with m degree of freedom and Fmx1 is the 
source vector.  

A. Multiparameter moment matching method 
To consider the parameter variation, (1) can be modified as 
                               F=UM ),...,p,p(p n21

                               (2) 
where, pi (i=1,2,…,n) are the parameters. Using the Taylor 
series expansion, M in (2) can be expressed as, 
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Eq. (3) can be simplified by introducing  
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Thus (2) can be written as  
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B. Proper Orthogonal Decomposition 
To reduce the computational time required to solve the 

system (4), POD method is applied. In this method, U is 
approximated as Ur  of size r ( r << m) such that 

                                       r= U ΨU                                        (5) 
where, Ψ is the discrete projection operator, calculated by the 
method of snapshot. To generate the snapshot matrix, (4) is 

I



solved for n state variables and n solutions are stored in a 
matrix Xs, called as snapshot matrix. Applying singular value 
decomposition (SVD), Xs can be decomposed as  

                                        T
s = WVX                                    (6) 

where,
nnmm  WV and are orthonormal matrices and nmΣ is the 

diagonal matrix of the singular value. Ψ is constructed by the r 
most representative vectors of V. r is selected from the 
singular value spectrum. Using Ψ, the MOR can be deduced 
by combining (4) and (5) 
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where, .T
r FΨFΨMΨM T

r  , The overall computational 
operation can be divided into (i) Initial parameter model based 
on FEM, (ii) parameterization using Taylor series (iii) POD 
based MOR. 

C.  Application and Result 
In terms of application, a 12 pole 9 slot SPMSM, shown in 

Fig. 1(a) is studied. The system is analyzed without 
connecting to electric source. The airgap magnetic flux density 
is considered for analysis. One third of the motor is modeled 
for symmetry in structure. The analysis can be divided into (i) 
single parameter variation and (ii) multiparameters variation. 
For the analysis, two parameters are considered, namely, 
residual magnetic flux density, Br of the PM and magnet 
thickness tmag. The initial values of Br and tmag are taken as 0.8 
T and 10 mm, respectively. In single parameter case, only Br is 
varied. Firstly, with the initial value of Br, FEM analysis of 
the SPMSM is carried out. Next, Br value is changed to 1.2 T 
and FEM is done. Under these two cases, airgap gap flux 
density variation is computed for one pole pitch movement of 
the motor. Using these data, the Taylor series expansion of (4) 
is generated for parameterization. The coefficients can be 
derived as  
                                                                                                 (8) 
 
                                                                                                 (9) 

Then to obtain reduced model, (6) is applied on (8) and (9). 
From the SVD of (8) and (9), the singular value spectrum can 
be plotted as shown in Fig. 1(b) and 2(a). From the plot, the 
reduced model is created only by using r equal to 10. For 
multiparameter variation, both Br and tmag are considered. FEM 
is carried out with varying the parameters to 1.2 T and 11 mm. 
The parameterization process is same as mentioned above. 
The basis function can be constructed by selecting r as 5, as 
shown in Fig. 2(b). The process of parameterization and MOR 
are carried out in MATLAB platform. Once the reduced model 
is generated, the computation of the airgap flux density 
variation with respect to a new value of Br and tmag can easily 
be calculated by the reduced model in MATLAB platform, 
without doing repeated high dimensional full model FEM 
analysis.  

With the PMOR model, different cases of single and 
multiparameter variations are studied. For single parameter 
case, Br values of 1 T and 1.5 T are chosen. The results 
obtained by reduced model is compared with that of the FEM 

models. Fig. 3(a) shows the comparison between the FEM and 
proposed PMOR data for the airgap flux density. The average 
percentage of approximation difference between the data 
obtained by FEM and PMOR is less than 0.5%. In 
multiparameter case, Br and tmag are taken as 1 T and 10.5 mm. 
The comparison between the FEM and PMOR models are 
presented in Fig. 3(b). The average approximation difference 
less than 1% 

In terms of computational cost, the proposed method is cost 
effective, because once the parametric effect is added to the 
reduced model, there is no need to analyze the whole high 
order system repeatedly, every time with the change of the 
parameter, like in the case of FEM. One needs to solve only a 
small matrix of size r, where r << m. Also, the PMOR shows 
good approximation result with multiparameter variation. In 
the future extended manuscript, the further detail analysis of 
the effect of nonlinearity on the approximated data will be 
included.…………………………………………………….…
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(a)                                                                  (b) 

Fig. 1. (a) 12 pole 9 slot SPMSM. (b) singular value spectrum for initial 
model 

 
(a)                                                        (b) 

Fig. 2. Singular value spectrum for (a) single parameter (b) multiparameter 
variation  

 
(a)                                                        (b) 

Fig. 3 airgap flux density distribution for (a) single parameter (b) 
multiparameter variation 
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